The Impact of the Nuclear EoS on the Long Term Supernova Neutrino Signal

Luke Roberts NSCL, MSU Collaborators: Sanjay Reddy, Andre Schneider, Gang Shen

Core Collapse Supernovae: Multi-Messenger Events

Energy (MeV)

Overview

- Background
- Impact of convection on neutrino emission
- Impact of opacities on neutrino emission and nucleosynthesis

Milky Way Supernova Rate

- Most recent known MW CCSN Cas A (~300 yrs)
- Look for supernovae in galaxies analogous to MW (Cappellaro et al. 1999)
- Take census of historical galactic supernovae and correct for obscuration (Tammann et al. 1994)
- Reasonably consistent

multiply by ~2.4 to get MW rate

galaxy		rate [SNu]	
type	Ia	II+Ib/c	All
S0a-Sb	0.27 ± 0.08	0.63 ± 0.24	0.91 ± 0.26
Sbc-Sd	0.24 ± 0.10	0.86 ± 0.31	1.10 ± 0.32
Spirals*	0.25 ± 0.09	0.76 ± 0.27	1.01 ± 0.29
.l	_		

Cappellaro et al. (1999)

SN* Neutrino Detectors

Detector	Type	Mass (kt)	Location	Events	Flavors	Status
Super-Kamiokande	H_2O	32	Japan	7,000	$\bar{\nu}_e$	Running
LVD	$C_n H_{2n}$	1	Italy	300	$\bar{ u}_e$	Running
KamLAND	$C_n H_{2n}$	1	Japan	300	$\bar{ u}_e$	Running
Borexino	$C_n H_{2n}$	0.3	Italy	100	$\bar{ u}_e$	Running
IceCube	Long string	(600)	South Pole	(10^6)	$\bar{ u}_e$	Running
Baksan	$C_n H_{2n}$	0.33	Russia	50	$\bar{ u}_e$	Running
$MiniBooNE^*$	$C_n H_{2n}$	0.7	USA	200	$\bar{ u}_e$	(Running)
HALO	Pb	0.08	Canada	30	$ u_e, u_x$	Running
Daya Bay	$C_n H_{2n}$	0.33	China	100	$\bar{ u}_e$	Running
$NO\nu A^*$	$C_n H_{2n}$	15	USA	4,000	$\bar{ u}_e$	Turning on
SNO+	$C_n H_{2n}$	0.8	Canada	300	$\bar{ u}_e$	Near future
$MicroBooNE^*$	Ar	0.17	USA	17	$ u_e$	Near future
DUNE	Ar	34	USA	$3,\!000$	$ u_e $	Proposed
Hyper-Kamiokande	H_2O	560	Japan	110,000	$\bar{ u}_e$	Proposed
JUNO	$C_n H_{2n}$	20	China	6000	$\bar{ u}_e$	Proposed
RENO-50	$C_n H_{2n}$	18	Korea	5400	$\bar{ u}_e$	Proposed
LENA	$C_n H_{2n}$	50	Europe	$15,\!000$	$\overline{ u}_e$	Proposed
PINGU	Long string	(600)	South Pole	(10^6)	$ar{ u}_e$	Proposed

Scholberg et al. (2015)

Late Time SN Neutrino Emission

See e.g. Burrows & Lattimer '86, Pons et al. '99, Huedepohl et al. '10, Fischer et al. '10, LR '12

- Kelvin-Helmholtz evolution of the neutron star mediated by neutrinos
- Coupled neutron star structure and neutrino transport
- Sensitive to dense matter equation of state, neutrino oscillations
- Possibly cleaner problem than explosion mechanism

s $(k_b/baryon)$

Anatomy of the Neutrino Signal

Core deleptonization

Deleptonization burst

Accretion phase

Mantle contraction

Core Cooling

Neutrinosphere recession

Anatomy of the Neutrino Signal

Core deleptonization

Deleptonization burst

Accretion phase

Mantle contraction

Core Cooling

Neutrinosphere recession

Proto-Neutron Star Convection

Region of convective instability determined by the Ledoux Criterion:

$$C_L = -\left(\frac{\partial P}{\partial s}\right)_{n,Y_l} \frac{ds}{dr} - \left(\frac{\partial P}{\partial Y_l}\right)_{n,s} \frac{dY_l}{dr} > 0$$

Convection

Black: No Convection

Red: Convection

See also Mirizzi et al. (2015)

Proto-Neutron Star Convection

Dependence on the EoS

Pressure derivatives are sensitive to the symmetry energy derivative:

$$\begin{pmatrix} \partial P \\ \partial Y_L \end{pmatrix}_{n_B} \simeq n_B^{4/3} Y_e^{1/3} - 4n_B^2 E_{\rm sym}' (1 - 2Y_e)$$

Comparison of Count Rates including Convection and Opacity Corrections

Impact of Nuclear Correlations on Neutrino Opacities

See Horowitz '93, Reddy et al. '99, and Burrows & Sawyer '99

Impact of Screening

Variations in the Interaction

What Determines the ν_{e} Spectra?

- "Neutrino sphere" is not well defined, energy dependent, range of densities and temperature
- Both charged and neutral current reactions important to ν_{e} and anti- ν_{e} decoupling radii
- Charged current rates introduce asymmetry between neutrinos and antineutrinos
- Difference between v_e and anti- v_e spectra strongly influences electron fraction of the neutrino driven wind and the nucleosynthesis that occurs there

Decoupling Conditions

Charged Current Interaction Rates in Medium

Nucleons are in an interacting medium, have altered dispersion relations:

$$E_i(k) = \sqrt{k^2 + M^{*2}} + U_i$$

Transfers potential difference to outgoing leptons:

$$\Delta U = U_n - U_p \approx 40 \times \frac{(n_n - n_p)}{n_0} \text{ MeV}$$

 $E_e = E_v + \Delta U$

$$\frac{1}{V} \frac{d^2 \sigma}{d \cos \theta dE_e} \propto \frac{G_F^2 \cos^2 \theta_e}{4\pi^2} p_e E_e \left(1 - f_e(E_e)\right)$$

Exponential increase in available phase space for electron neutrino capture:

$$\frac{\lambda^{-1}(\Delta U)}{\lambda^{-1}(\Delta U=0)} \approx \frac{(\varepsilon_v + \Delta U)^2}{\varepsilon_v^2} \exp(\Delta U/T)$$

e.g. Reddy et al. 1998, Horowitz & Perez-Garcia 2003, LR, Reddy & Shen 2012, LR & Reddy 2017

Neutrino emission w/ and w/o Nuclear Interactions

See LR '12 and Martinez-Pinedo et al. '12

Neutrino emission w/ and w/o Nuclear Interactions

See LR '12 and Martinez-Pinedo et al. '12

Symmetry Energy Dependence

Conclusions

- PNS convection significantly impacts the neutrino cooling timescale, produces a break in the neutrino emission. Convection is sensitive to the nuclear EoS (mainly the symmetry energy), so constraining density dependence is important to predicting the timescale of neutrino emission
- Neutrino opacities especially important to the late time cooling timescale. In particular, nuclear correlations can also leave a signature on the tail of the neutrino signal.
- Properties of the neutrinos can also impact nucleosynthesis near the PNS. The nucleon self-energies play a significant role in determining neutron or proton richness of the NDW.